Cart (Loading....) | Create Account
Close category search window
 

A Soft-Computing Methodology for Noninvasive Time-Spatial Temperature Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

The safe and effective application of thermal therapies is restricted due to lack of reliable noninvasive temperature estimators. In this paper, the temporal echo-shifts of backscattered ultrasound signals, collected from a gel-based phantom, were tracked and assigned with the past temperature values as radial basis functions neural networks input information. The phantom was heated using a piston-like therapeutic ultrasound transducer. The neural models were assigned to estimate the temperature at different intensities and points arranged across the therapeutic transducer radial line (60 mm apart from the transducer face). Model inputs, as well as the number of neurons were selected using the multiobjective genetic algorithm (MOGA). The best attained models present, in average, a maximum absolute error less than 0.5 C, which is pointed as the borderline between a reliable and an unreliable estimator in hyperthermia/diathermia. In order to test the spatial generalization capacity, the best models were tested using spatial points not yet assessed, and some of them presented a maximum absolute error inferior to 0.5 C, being ldquoelectedrdquo as the best models. It should be also stressed that these best models present implementational low-complexity, as desired for real-time applications.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:55 ,  Issue: 2 )

Date of Publication:

Feb. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.