By Topic

Dosimetric Assessment of Simultaneous Exposure to ELF Electric and Magnetic Fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Leitgeb, N. ; Graz Univ. of Technol., Graz ; Cech, R.

In the low-frequency range, both electric and magnetic fields interact with biological tissue by inducing intracorporal electric current densities, although ruled by different physical laws and, hence, with different intracorporal orientation and pathways. Presently, standards require a separate assessment of electric and magnetic fields even in the case of simultaneous exposure and, hence, ignore the superposition of intracorporal current densities. Numerical simulations with the Visible Man model show that this can lead to underestimating current densities in the central nervous system (CNS) by up to 29%. While the superposed electric current densities in the CNS still meet the basic restrictions, the situation changes if a fetus with its own CNS requires the same level of protection. When the compliance volume is extended to the trunk, the reference-level electric-field exposure exceeds the basic restrictions by 38%. Depending on the kind of summation of the vectorial contributions, simultaneous exposure to the 50 Hz-5 kV/m electric field and 100-T magnetic field may lead to a 2.1-fold to 2.6-fold excess of the basic restriction. While this does not prove noncompliance, it indicates that fetal CNS exposure modeling is needed for clarification.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:55 ,  Issue: 2 )