Cart (Loading....) | Create Account
Close category search window
 

Reducing the Effect of Respiration in Baroreflex Sensitivity Estimation With Adaptive Filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Cardiac baroreflex is described by baroreflex sensitivity (BRS) from blood pressure and heart rate interval (RRi) fluctuations. However, respiration affects both blood pressure and RRi via mechanisms that are not necessarily of baroreflex origin. To separate the effects of baroreflex and respiration, metronome-guided breathing in a high frequency band (HF, 0.25-0.4 Hz) and a low frequency spectral band (LF, 0.04-0.15 Hz) have therefore been commonly used for BRS estimation. The controlled breathing may, however, change the natural functioning of the autonomic system and interfere BRS estimates. To enable usage of spontaneous breathing, we propose an adaptive LMS-based filter for removing the respiration effect from the BRS estimates. ECG, continuous blood pressure and respiration were measured during 5 min spontaneous and 5 min controlled breathing at 0.25 Hz in healthy males (n =24, 33plusmn7 years). BRS was calculated with spectral methods from the LF band with and without filtering. In those subjects whose spontaneous breathing rate was <0.15 Hz, the BRS(LF) values were overestimated, whereas the adaptive filtering reduced the bias significantly. As a conclusion, the adaptive filter reduces the distorting effect of respiration on BRS values, which enables more accurate estimation of BRS and the usage of spontaneous breathing as a measurement protocol.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:55 ,  Issue: 1 )

Date of Publication:

Jan. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.