By Topic

The Effect of Connectivity on EEG Rhythms, Power Spectral Density and Coherence Among Coupled Neural Populations: Analysis With a Neural Mass Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zavaglia, M. ; Univ. of Bologna, Bologna ; Astolfi, L. ; Babiloni, F. ; Ursino, M.

In the present work, a neural mass model consisting of four interconnected neural groups (pyramidal neurons, excitatory interneurons, inhibitory interneurons with slow synaptic kinetics, and inhibitory interneurons with fast synaptic kinetics) is used to investigate the mechanisms which cause the appearance of multiple rhythms in EEG spectra, and to assess how these rhythms can be affected by connectivity among different populations. In particular, we analyze a circuit, composed of three interconnected populations, each with a different synaptic kinetics (hence, with a different intrinsic rhythm). Results demonstrate that a single population can exhibit many different simultaneous rhythms, provided that some of these come from external sources (for instance, from remote regions). Analysis of coherence, and of the position of peaks in power spectral density, reveals important information on the possible connections among populations, especially useful to follow temporal changes in connectivity. Subsequently, the model is validated by comparing the power spectral density simulated in one population with that computed in the controlateral cingulated cortex (a region involved in motion preparation) during a right foot movement task in four normal subjects. The model is able to simulate real spectra quite well with only moderate parameter changes within the subject. In perspective, the results may be of value for a deeper comprehension of mechanism causing EEGs rhythms, for the study of brain connectivity and for the test of neurophysiological hypotheses.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:55 ,  Issue: 1 )