By Topic

Velocity-Aligned Discrete Oriented Polytopes for Dynamic Collision Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Coming, D.S. ; Univ. of California, Davis ; Staadt, O.G.

We propose an acceleration scheme for many-body dynamic collision detection at interactive rates. We use the Velocity-Aligned Discrete Oriented Polytope (VADOP), a tight bounding volume representation that offers fast update rates and which is particularly suitable for applications with many fast-moving objects. The axes selection that determines the shape of our bounding volumes is based on spherical coverings. We demonstrate that we can robustly detect collisions that are missed by pseudodynamic collision detection schemes with even greater performance due to substantial collision pruning by our bounding volumes.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:14 ,  Issue: 1 )