By Topic

Data Gathering with Tunable Compression in Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yang Yu ; Motorola Labs, Schaumburg ; Krishnamachari, B. ; Prasanna, V.K.

We study the problem of constructing a data gathering tree over a wireless sensor network in order to minimize the total energy for compressing and transporting information from a set of source nodes to the sink. This problem is crucial for advanced computationally intensive applications, where traditional "maximum" in-network compression may result in significant computation energy. We investigate a tunable data compression technique that enables effective trade-offs between the computation and communication costs. We derive the optimal compression strategy for a given data gathering tree and then investigate the performance of different tree structures for networks deployed on a grid topology, as well as general graphs. Our analytical results pertaining to the grid topology and simulation results pertaining to the general graphs indicate that the performance of a simple greedy approximation to the Minimal Steiner Tree (MST) provides a constant-factor approximation for the grid topology and good average performance on the general graphs. Although, theoretically, a more complicated randomized algorithm offers a polylogarithmic performance bound, the simple greedy approximation of MST is attractive for practical implementation.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:19 ,  Issue: 2 )