By Topic

Throughput Analysis and Measurements in IEEE 802.11 WLANs with TCP and UDP Traffic Flows

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Raffaele Bruno ; Italian Nat. Res. Council (CNR), Pisa ; Marco Conti ; Enrico Gregori

There is a vast literature on the throughput analysis of the IEEE 802.11 media access control (MAC) protocol. However, very little has been done on investigating the interplay between the collision avoidance mechanisms of the 802.11 MAC protocol and the dynamics of upper layer transport protocols. In this paper, we tackle this issue from an analytical, simulative, and experimental perspective. Specifically, we develop Markov chain models to compute the distribution of the number of active stations in an 802.11 wireless local area network (WLAN) when long-lived transmission control protocol (TCP) connections compete with finite-load user datagram protocol (UDP) flows. By embedding these distributions in the MAC protocol modeling, we derive approximate but accurate expressions of the TCP and UDP throughput. We validate the model accuracy through performance tests carried out in a real WLAN for a wide range of configurations. Our analytical model and the supporting experimental outcomes show that 1) the total TCP throughput is basically independent of the number of open TCP connections and the aggregate TCP traffic can be equivalently modeled as two saturated flows; and 2) in the saturated regime, n UDP flows obtain about n times the aggregate throughput achieved by the TCP flows, which is independent of the overall number of persistent TCP connections.

Published in:

IEEE Transactions on Mobile Computing  (Volume:7 ,  Issue: 2 )