By Topic

Compact Modeling and Simulation of Circuit Reliability for 65-nm CMOS Technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Negative bias temperature instability (NBTI) and channel hot carrier (CHC) are the leading reliability concerns for nanoscale transistors. The de facto modeling method to analyze CHC is based on substrate current Isub, which becomes increasingly problematic with technology scaling as various leakage components dominate Isub. In this paper, we present a unified approach that directly predicts the change of key transistor parameters under various process and design conditions for both NBTI and CHC effects. Using the general reaction-diffusion model and the concept of surface potential, the proposed method continuously captures the performance degradation across subthreshold and strong inversion regions. Models are comprehensively verified with an industrial 65-nm technology. By benchmarking the prediction of circuit performance degradation with the measured ring oscillator data and simulations of an amplifier, we demonstrate that the proposed method very well predicts the degradation. For 65-nm technology, NBTI is the dominant reliability concern, and the impact of CHC on circuit performance is relatively small.

Published in:

IEEE Transactions on Device and Materials Reliability  (Volume:7 ,  Issue: 4 )