By Topic

A Building Block for Coarse-Grain Optimizations in the On-Chip Memory Hierarchy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zebchuk, J. ; Univ. of Toronto, Toronto ; Moshovos, A.

Current on-chip block-centric memory hierarchies exploit access patterns at the fine-grain scale of small blocks. Several recently proposed memory hierarchy enhancements for coherence traffic reduction and prefetching suggest that additional useful patterns emerge with a macroscopic, coarse-grain view. This paper presents RegionTracker, a dual-grain, on-chip cache design that exposes coarse-grain behavior while maintaining block-level communication. RegionTracker eliminates the extraneous, often imprecise coarse-grain tracking structures of previous proposals. It can be used as the building block for coarse-grain optimizations, reducing their overall cost and easing their adoption. Using full-system simulation of a quad-core chip multiprocessor and commercial workloads, we demonstrate that RegionTracker overcomes the inefficiencies of previous coarse-grain cache designs. We also demonstrate how RegionTracker boosts the benefits and reduces the cost of a previously proposed snoop reduction technique.

Published in:

Computer Architecture Letters  (Volume:6 ,  Issue: 2 )