By Topic

Hadamard Conjugation for the Kimura 3ST Model: Combinatorial Proof Using Path Sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hendy, M.D. ; Allan Wilson Centre for Mol. Ecology & Evolution, Massey Univ., Palmerston North ; Snir, S.

Under a stochastic model of molecular sequence evolution the probability of each possible pattern of a characters is well defined. The Kimura's three-substitution-types (K3ST) model of evolution, allows analytical expression for these probabilities of by means of the Hadamard conjugation as a function of the phylogeny T and the substitution probabilities on each edge of TM . In this paper we produce a direct combinatorial proof of these results, using pathset distances which generalise pairwise distances between sequences. This interpretation provides us with tools that were proved useful in related problems in the mathematical analysis of sequence evolution.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:5 ,  Issue: 3 )