By Topic

Algorithms for Efficient Near-Perfect Phylogenetic Tree Reconstruction in Theory and Practice

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Sridhar, S. ; Carnegie Mellon Univ., Pittsburgh ; Dhamdhere, K. ; Blelloch, G.E. ; Halperin, E.
more authors

We consider the problem of reconstructing near-perfect phylogenetic trees using binary character states (referred to as BNPP). A perfect phylogeny assumes that every character mutates at most once in the evolutionary tree, yielding an algorithm for binary character states that is computationally efficient but not robust to imperfections in real data. A near-perfect phylogeny relaxes the perfect phylogeny assumption by allowing at most a constant number of additional mutations. We develop two algorithms for constructing optimal near-perfect phylogenies and provide empirical evidence of their performance. The first simple algorithm is fixed-parameter tractable when the number of additional mutations and the number of characters that share four gametes with some other character are constants. The second, more involved, algorithm for the problem is fixed-parameter tractable when only the number of additional mutations is fixed. We have implemented both algorithms and have shown them to be extremely efficient in practice on biologically significant data sets. This work proves that the BNPP problem is fixed-parameter tractable and provides the first practical phylogenetic tree reconstruction algorithms that find guaranteed optimal solutions while being easily implemented and computationally feasible for data sets of biologically meaningful size and complexity.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:4 ,  Issue: 4 )