By Topic

Statistical Characterization of Protein Ensembles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rother, D. ; Univ. of Minnesota, Minneapolis ; Sapiro, G. ; Pande, V.

When accounting for structural fluctuations or measurement errors, a single rigid structure may not be sufficient to represent a protein. One approach to solve this problem is to represent the possible conformations as a discrete set of observed conformations, an ensemble. In this work, we follow a different richer approach and introduce a framework for estimating probability density functions in very high dimensions and then apply it to represent ensembles of folded proteins. This proposed approach combines techniques such as kernel density estimation, maximum likelihood, cross validation, and bootstrapping. We present the underlying theoretical and computational framework and apply it to artificial data and protein ensembles obtained from molecular dynamics simulations. We compare the results with those obtained experimentally, illustrating the potential and advantages of this representation.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:5 ,  Issue: 1 )