By Topic

RnaPredict—An Evolutionary Algorithm for RNA Secondary Structure Prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wiese, K.C. ; Simon Fraser Univ., Surrey ; Deschenes, A.A. ; Hendriks, A.G.

This paper presents two in-depth studies on RnaPredict, an evolutionary algorithm for RNA secondary structure prediction. The first study is an analysis of the performance of two thermodynamic models, Individual Nearest Neighbor (INN) and Individual Nearest Neighbor Hydrogen Bond (INN-HB). The correlation between the free energy of predicted structures and the sensitivity is analyzed for 19 RNA sequences. Although some variance is shown, there is a clear trend between a lower free energy and an increase in true positive base pairs. With increasing sequence length, this correlation generally decreases. In the second experiment, the accuracy of the predicted structures for these 19 sequences are compared against the accuracy of the structures generated by the mfold dynamic programming algorithm (DPA) and also to known structures. RnaPredict is shown to outperform the minimum free energy structures produced by mfold and has comparable performance when compared to suboptimal structures produced by mfold.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:5 ,  Issue: 1 )