Cart (Loading....) | Create Account
Close category search window
 

Novel Algorithm for Coexpression Detection in Time-Varying Microarray Datasets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zong-Xian Yin ; Southern Taiwan Univ., Tainan ; Jung-Hsien Chiang

When analyzing the results of microarray experiments, biologists generally use unsupervised categorization tools. However, such tools regard each time point as an independent dimension and utilize the euclidean distance to compute the similarities between expressions. Furthermore, some of these methods require the number of clusters to be determined in advance, which is clearly impossible in the case of a new data set. Therefore, this study proposes a novel scheme, designated the variation-based coexpression detection (VCD) algorithm, to analyze the trends of expressions based on their variation over time. The proposed algorithm has two advantages. First, it is unnecessary to determine the number of clusters in advance since the algorithm automatically detects those genes whose profiles are grouped together and creates patterns for these groups. Second, the algorithm features a new measurement criterion for calculating the degree of change of the expressions between adjacent time points and evaluating their trend similarities. Three real-world microarray data sets are employed to evaluate the performance of the proposed algorithm.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:5 ,  Issue: 1 )

Date of Publication:

Jan.-March 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.