By Topic

Generalized Discrete Multiwavelet Transform With Embedded Orthogonal Symmetric Prefilter Bank

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tai-Chiu Hsung ; Hong Kong Polytech Univ., Hong Kong ; Lun, Daniel Pak-Kong ; Yu-Hing Shum ; Ho, K.C.

Prefilters are generally applied to the discrete multiwavelet transform (DMWT) for processing scalar signals. To fully utilize the benefit offered by DMWT, it is important to have the prefilter designed appropriately so as to preserve the important properties of multiwavelets. To this end, we have recently shown that it is possible to have the prefilter designed to be maximally decimated, yet preserve the linear phase and orthogonal properties as well as the approximation power of multiwavelets. However, such design requires the point of symmetry of each channel of the prefilter to match with the scaling functions of the target multiwavelet system. It can be very difficult to find a compatible filter bank structure; and in some cases, such filter structure simply does not exist, e.g., for multiwavelets of multiplicity 2. In this paper, we suggest a new DMWT structure in which the prefilter is combined with the first stage of DMWT. The advantage of the new structure is twofold. First, since the prefiltering stage is embedded into DMWT, the computational complexity can be greatly reduced. Experimental results show that an over 20% saving in arithmetic operations can be achieved comparing with the traditional DMWT realizations. Second, the new structure provides additional design freedom that allows the resulting prefilters to be maximally decimated, orthogonal and symmetric even for multiwavelets of low multiplicity. We evaluated the new DMWT structure in terms of computational complexity, energy compaction ratio as well as the compression performance when applying to a VQ based image coding system. Satisfactory results are obtained in all cases comparing with the traditional approaches.

Published in:

Signal Processing, IEEE Transactions on  (Volume:55 ,  Issue: 12 )