By Topic

Bayesian Inference for Linear Dynamic Models With Dirichlet Process Mixtures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Caron, F. ; Univ. of British Columbia, Vancouver ; Davy, Manuel ; Doucet, Arnaud ; Duflos, E.
more authors

Using Kalman techniques, it is possible to perform optimal estimation in linear Gaussian state-space models. Here, we address the case where the noise probability density functions are of unknown functional form. A flexible Bayesian nonparametric noise model based on Dirichlet process mixtures is introduced. Efficient Markov chain Monte Carlo and sequential Monte Carlo methods are then developed to perform optimal batch and sequential estimation in such contexts. The algorithms are applied to blind deconvolution and change point detection. Experimental results on synthetic and real data demonstrate the efficiency of this approach in various contexts.

Published in:

Signal Processing, IEEE Transactions on  (Volume:56 ,  Issue: 1 )