By Topic

Visual Perception and Mixed-Initiative Interaction for Assisted Visualization Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Healey, Christopher G. ; North Carolina State Univ., Raleigh ; Kocherlakota, S. ; Rao, V. ; Mehta, R.
more authors

This paper describes the integration of perceptual guidelines from human vision with an Al-based mixed-initiative search strategy. The result is a visualization assistant called ViA, a system that collaborates with its users to identify perceptually salient visualizations for large multidimensional data sets. ViA applies the knowledge of low-level human vision to 1) evaluate the effectiveness of a particular visualization for a given data set and analysis tasks and 2) rapidly direct its search toward new visualizations that are most likely to offer improvements over those seen to date. Context, domain expertise, and a high-level understanding of a data set are critical to identifying effective visualizations. We apply a mixed-initiative strategy that allows ViA and its users to share their different strengths and continually improve ViA's understanding of a user's preferences. We visualize historical weather conditions to compare ViA's search strategy to exhaustive analysis, simulated annealing, and reactive tabu search and to measure the improvement provided by mixed-initiative interaction. We also visualize intelligent agents competing in a simulated online auction to evaluate ViA's perceptual guidelines. Results from each study are positive, suggesting that ViA can construct high-quality visualizations for a range of real-world data sets.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:14 ,  Issue: 2 )