By Topic

Generic Remeshing of 3D Triangular Meshes with Metric-Dependent Discrete Voronoi Diagrams

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sebastien Valette ; Univ. Claude Bernard Lyon I, Villeurbanne ; Jean Marc Chassery ; Remy Prost

In this paper, we propose a generic framework for 3D surface remeshing. Based on a metric-driven Discrete Voronoi Diagram construction, our output is an optimized 3D triangular mesh with a user-defined vertex budget. Our approach can deal with a wide range of applications, from high-quality mesh generation to shape approximation. By using appropriate metric constraints, the method generates isotropic or anisotropic elements. Based on point sampling, our algorithm combines the robustness and theoretical strength of Delaunay criteria with the efficiency of an entirely discrete geometry processing. Besides the general described framework, we show the experimental results using isotropic, quadric-enhanced isotropic, and anisotropic metrics, which prove the efficiency of our method on large meshes at a low computational cost.

Published in:

IEEE Transactions on Visualization and Computer Graphics  (Volume:14 ,  Issue: 2 )