Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Reducing Photon-Mapping Bandwidth by Query Reordering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Steinhurst, J. ; Bucknell Univ., Lewisburg ; Coombe, G. ; Lastra, A.

Photon mapping places an enormous burden on the memory hierarchy. Rendering a 512 x 512 image of a simple scene can require more than 196 Gbytes of raw bandwidth to the photon map data structure. This bandwidth is a major obstacle to real-time photon mapping. This paper investigates two approaches for reducing the required bandwidth: 1) reordering the kNN searches and 2) cache conscious data structures. Using a Hilbert curve reordering, we demonstrate an experimental lower bound of 15 Mbytes of bandwidth for the same scene. Unfortunately, this improvement of four orders of magnitude requires a prohibitive amount of intermediate storage. We introduce two novel cost-effective algorithms that reduce the bandwidth by one order of magnitude. Scenes of different complexities are shown to exhibit similar reductions in bandwidth. We explain why the choice of data structure does not achieve similar reductions. We also examine the interaction of query reordering with two photon map acceleration techniques, importance sampling, and the irradiance cache. Query reordering exploits the additional coherence that arises from the use of importance sampling in scenes with glossy surfaces. Irradiance caching also benefits from query reordering, even when complex surface geometry reduces the effectiveness of the irradiance cache.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:14 ,  Issue: 1 )