By Topic

Computing Length-Preserved Free Boundary for Quasi-Developable Mesh Segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

Stretch-free surface flattening has been requested by a variety of applications. At present, the most difficult problem is how to segment a given model into nearly developable atlases so that a nearly stretch-free flattening can be computed. The criterion for segmentation is needed to evaluate the possibility of flattening a given surface patch, which should be fast computed. In this paper, we present a method to compute the length-preserved free boundary (LPFB) of a mesh patch which speeds up the mesh parameterization. The distortion on parameterization can then be employed as the criterion in a trial-and-error algorithm for segmenting a given model into nearly developable atlases. The computation of LPFB is formulated as a numerical optimization problem in the angle space, where we are trying to optimize the angle excesses on the boundary while preserving the constraints derived from the closed-path theorem and the length preservation.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:14 ,  Issue: 1 )