Cart (Loading....) | Create Account
Close category search window
 

FlexiTP: A Flexible-Schedule-Based TDMA Protocol for Fault-Tolerant and Energy-Efficient Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lee, W.L. ; Sch. of Comput. Sci. & Software Eng., Western Australia Univ., Crawley, WA ; Datta, A. ; Cardell-Oliver, R.

FlexiTP is a novel TDMA protocol that offers a synchronized and loose slot structure. Nodes in the network can build, modify, or extend their scheduled number of slots during execution, based on their local information. Nodes wake up for their scheduled slots; otherwise, they switch into power-saving sleep mode. This flexible schedule allows FlexiTP to be strongly fault tolerant and highly energy efficient. FlexiTP is scalable for a large number of nodes because its depth-first-search schedule minimizes buffering, and it allows communication slots to be reused by nodes outside each other's interference range. Hence, the overall scheme of FlexiTP provides end-to-end guarantees on data delivery (throughput, fair access, and robust self-healing) while also respecting the severe energy and memory constraints of wireless sensor networks. Simulations in ns-2 show that FlexiTP ensures energy efficiency and is robust to network dynamics (faults such as dropped packets and nodes joining or leaving the network) under various network configurations (network topology and network density), providing an efficient solution for data-gathering applications. Furthermore, under high contention, FlexiTP outperforms 2-MAC in terms of energy efficiency and network performance.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:19 ,  Issue: 6 )

Date of Publication:

June 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.