By Topic

Parallel Implementation of the 2D Discrete Wavelet Transform on Graphics Processing Units: Filter Bank versus Lifting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Tenllado, C. ; Univ. Complutense de Madrid, Madrid ; Setoain, J. ; Prieto, M. ; Pinuel, L.
more authors

The widespread usage of the discrete wavelet transform (DWT) has motivated the development of fast DWT algorithms and their tuning on all sorts of computer systems. Several studies have compared the performance of the most popular schemes, known as filter bank scheme (FBS) and lifting scheme (LS), and have always concluded that LS is the most efficient option. However, there is no such study on streaming processors such as modern Graphics Processing Units (GPUs). Current trends have transformed these devices into powerful stream processors with enough flexibility to perform intensive and complex floating-point calculations. The opportunities opened up by these platforms, as well as the growing popularity of the DWT within the computer graphics field, make a new performance comparison of great practical interest. Our study indicates that FBS outperforms LS in current-generation GPUs. In our experiments, the actual FBS gains range between 10 percent and 140 percent, depending on the problem size and the type and length of the wavelet filter. Moreover, design trends suggest higher gains in future-generation GPUs.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:19 ,  Issue: 3 )