By Topic

Likelihood Ratio-Based Biometric Score Fusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Nandakumar, K. ; Michigan State Univ., East Lansing ; Yi Chen ; Dass, S.C. ; Jain, A.K.

Multibiometric systems fuse information from different sources to compensate for the limitations in performance of individual matchers. We propose a framework for the optimal combination of match scores that is based on the likelihood ratio test. The distributions of genuine and impostor match scores are modeled as finite Gaussian mixture model. The proposed fusion approach is general in its ability to handle 1) discrete values in biometric match score distributions, 2) arbitrary scales and distributions of match scores, 3) correlation between the scores of multiple matchers, and 4) sample quality of multiple biometric sources. Experiments on three multibiometric databases indicate that the proposed fusion framework achieves consistently high performance compared to commonly used score fusion techniques based on score transformation and classification.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:30 ,  Issue: 2 )