Cart (Loading....) | Create Account
Close category search window
 

Subpixel Photometric Stereo

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ping Tan ; Dept. of Comput. Sci. & Eng., Hong Kong Univ. of Sci. & Technol., Hong Kong ; Lin, S. ; Long Quan

Conventional photometric stereo recovers one normal direction per pixel of the input image. This fundamentally limits the scale of recovered geometry to the resolution of the input image, and cannot model surfaces with subpixel geometric structures. In this paper, we propose a method to recover subpixel surface geometry by studying the relationship between the subpixel geometry and the reflectance properties of a surface. We first describe a generalized physically-based reflectance model that relates the distribution of surface normals inside each pixel area to its reflectance function. The distribution of surface normals can be computed from the reflectance functions recorded in photometric stereo images. A convexity measure of subpixel geometry structure is also recovered at each pixel, through an analysis of the shadowing attenuation. Then, we use the recovered distribution of surface normals and the surface convexity to infer subpixel geometric structures on a surface of homogeneous material by spatially arranging the normals among pixels at a higher resolution than that of the input image. Finally, we optimize the arrangement of normals using a combination of belief propagation and MCMC based on a minimum description length criterion on 3D textons over the surface. The experiments demonstrate the validity of our approach and show superior geometric resolution for the recovered surfaces.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:30 ,  Issue: 8 )

Date of Publication:

Aug. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.