By Topic

A Fast Algorithm for Learning a Ranking Function from Large-Scale Data Sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Raykar, V.C. ; CAD & Knowledge Solutions (IKM CKS), Siemens Med. Solutions Inc., Malvern, PA ; Duraiswami, R. ; Krishnapuram, Balaji

We consider the problem of learning a ranking function that maximizes a generalization of the Wilcoxon-Mann-Whitney statistic on the training data. Relying on an e-accurate approximation for the error function, we reduce the computational complexity of each iteration of a conjugate gradient algorithm for learning ranking functions from O(m2) to O(m), where m is the number of training samples. Experiments on public benchmarks for ordinal regression and collaborative filtering indicate that the proposed algorithm is as accurate as the best available methods in terms of ranking accuracy, when the algorithms are trained on the same data. However, since it is several orders of magnitude faster than the current state-of-the-art approaches, it is able to leverage much larger training data sets.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:30 ,  Issue: 7 )