By Topic

Tracking the Visual Focus of Attention for a Varying Number of Wandering People

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Smith, K. ; IC ISIM CVLAB, Ecole Polytech. Fed. de Lausanne (EPFL), Lausanne ; Ba, S.O. ; Odobez, J. ; Gatica-Perez, D.

In this paper, we define and address the problem of finding the visual focus of attention for a varying number of wandering people (VFOA-W), determining where a person is looking when their movement is unconstrained. The VFOA-W estimation is a new and important problem with implications in behavior understanding and cognitive science and real-world applications. One such application, presented in this paper, monitors the attention passers-by pay to an outdoor advertisement by using a single video camera. In our approach to the VFOA-W problem, we propose a multiperson tracking solution based on a dynamic Bayesian network that simultaneously infers the number of people in a scene, their body locations, their head locations, and their head pose. For efficient inference in the resulting variable-dimensional state-space, we propose a Reversible-Jump Markov Chain Monte Carlo (RJMCMC) sampling scheme and a novel global observation model, which determines the number of people in the scene and their locations. To determine if a person is looking at the advertisement or not, we propose Gaussian Mixture Model (GMM)-based and Hidden Markov Model (HMM)-based VFOA-W models, which use head pose and location information. Our models are evaluated for tracking performance and ability to recognize people looking at an outdoor advertisement, with results indicating good performance on sequences where up to three mobile observers pass in front of an advertisement.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:30 ,  Issue: 7 )