By Topic

Multiscale Categorical Object Recognition Using Contour Fragments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jamie Shotton ; Toshiba Corp. R&D Center, Kawaski ; Andrew Blake ; Roberto Cipolla

Psychophysical studies show that we can recognize objects using fragments of outline contour alone. This paper proposes a new automatic visual recognition system based only on local contour features, capable of localizing objects in space and scale. The system first builds a class-specific codebook of local fragments of contour using a novel formulation of chamfer matching. These local fragments allow recognition that is robust to within-class variation, pose changes, and articulation. Boosting combines these fragments into a cascaded sliding-window classifier, and mean shift is used to select strong responses as a final set of detection. We show how learning can be performed iteratively on both training and test sets to bootstrap an improved classifier. We compare with other methods based on contour and local descriptors in our detailed evaluation over 17 challenging categories and obtain highly competitive results. The results confirm that contour is indeed a powerful cue for multiscale and multiclass visual object recognition.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:30 ,  Issue: 7 )