By Topic

Border and SurfaceTracing - Theoretical Foundations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Valentin Brimkov ; Buffalo State Coll., Buffalo ; Reinhard Klette

In this paper, we define and study digital manifolds of arbitrary dimension, and provide (in particular) a general theoretical basis for curve or surface tracing in picture analysis. The studies involve properties such as the one-dimensionality of digital curves and (n - 1)-dimensionality of digital hypersurfaces that makes them discrete analogs of corresponding notions in continuous topology. The presented approach is fully based on the concept of adjacency relation and complements the concept of dimension, as common in combinatorial topology. This work appears to be the first one on digital manifolds based on a graph-theoretical definition of dimension. In particular, in the n-dimensional digital space, a digital curve is a one-dimensional object and a digital hypersurface is an (n - 1)-dimensional object, as it is in the case of curves and hypersurfaces in the Euclidean space. Relying on the obtained properties of digital hypersurfaces, we propose a uniform approach for studying good pairs defined by separations and obtain a classification of good pairs in arbitrary dimension. We also discuss possible applications of the presented definitions and results.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:30 ,  Issue: 4 )