By Topic

Eigenfeature Regularization and Extraction in Face Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xudong Jiang ; Nanyang Technol. Univ., Singapore ; Bappaditya Mandal ; Alex Kot

This work proposes a subspace approach that regularizes and extracts eigenfeatures from the face image. Eigenspace of the within-class scatter matrix is decomposed into three subspaces: a reliable subspace spanned mainly by the facial variation, an unstable subspace due to noise and finite number of training samples, and a null subspace. Eigenfeatures are regularized differently in these three subspaces based on an eigenspectrum model to alleviate problems of instability, overfitting, or poor generalization. This also enables the discriminant evaluation performed in the whole space. Feature extraction or dimensionality reduction occurs only at the final stage after the discriminant assessment. These efforts facilitate a discriminative and a stable low-dimensional feature representation of the face image. Experiments comparing the proposed approach with some other popular subspace methods on the FERET, ORL, AR, and GT databases show that our method consistently outperforms others.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:30 ,  Issue: 3 )