Cart (Loading....) | Create Account
Close category search window
 

Detecting Objects of Variable Shape Structure With Hidden State Shape Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jingbin Wang ; Google Inc., Mountain View ; Athitsos, V. ; Sclaroff, S. ; Betke, M.

This paper proposes a method for detecting object classes that exhibit variable shape structure in heavily cluttered images. The term "variable shape structure" is used to characterize object classes in which some shape parts can be repeated an arbitrary number of times, some parts can be optional, and some parts can have several alternative appearances. Hidden state shape models (HSSMs), a generalization of hidden Markov models (HMMs), are introduced to model object classes of variable shape structure using a probabilistic framework. A polynomial inference algorithm automatically determines object location, orientation, scale, and structure by finding the globally optimal registration of model states with the image features, even in the presence of clutter. Experiments with real images demonstrate that the proposed method can localize objects of variable shape structure with high accuracy. For the task of hand shape localization and structure identification, the proposed method is significantly more accurate than previously proposed methods based on chamfer-distance matching. Furthermore, by integrating simple temporal constraints, the proposed method gains speed-ups of more than an order of magnitude and produces highly accurate results in experiments on nonrigid hand motion tracking.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:30 ,  Issue: 3 )

Date of Publication:

March 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.