By Topic

Constraint Integration for Efficient Multiview Pose Estimation with Self-Occlusions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gupta, A. ; Univ. of Maryland, College Park ; Mittal, A. ; Davis, L.S.

Automatic initialization and tracking of human pose is an important task in visual surveillance. We present a part-based approach that incorporates a variety of constraints in a unified framework. These constraints include the kinematic constraints between parts that are physically connected to each other, the occlusion of one part by another, and the high correlation between the appearance of certain parts, such as the arms. The location probability distribution of each part is determined by evaluating appropriate likelihood measures. The graphical (nontree) structure representing the interdependencies between parts is utilized to "connect" such part distributions via nonparametric belief propagation. Methods are also developed to perform this optimization efficiently in the large space of pose configurations.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:30 ,  Issue: 3 )