By Topic

Weighted Pseudometric Discriminatory Power Improvement Using a Bayesian Logistic Regression Model Based on a Variational Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ksantini, R. ; Univ. de Sherbrooke, Sherbrooke ; Ziou, D. ; Colin, B. ; Dubeau, F.

In this paper, we investigate the effectiveness of a Bayesian logistic regression model to compute the weights of a pseudometric in order to improve its discriminatory capacity and thereby increase image retrieval accuracy. In the proposed Bayesian model, the prior knowledge of the observations is incorporated and the posterior distribution is approximated by a tractable Gaussian form using variational transformation and Jensen's inequality, which allow a fast and straightforward computation of the weights. The pseudometric makes use of the compressed and quantized versions of wavelet decomposed feature vectors, and in our previous work, the weights were adjusted by the classical logistic regression model. A comparative evaluation of the Bayesian and classical logistic regression models is performed for content-based image retrieval, as well as for other classification tasks, in a decontextualized evaluation framework. In this same framework, we compare the Bayesian logistic regression model to some relevant state-of-the-art classification algorithms. Experimental results show that the Bayesian logistic regression model outperforms these linear classification algorithms and is a significantly better tool than the classical logistic regression model to compute the pseudometric weights and improve retrieval and classification performance. Finally, we perform a comparison with results obtained by other retrieval methods.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:30 ,  Issue: 2 )