By Topic

Script and Language Identification in Noisy and Degraded Document Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lu Shijian ; Nat. Univ. of Singapore, Singapore ; Chew Lim Tan

This paper reports an identification technique that detects scripts and languages of noisy and degraded document images. In the proposed technique, scripts and languages are identified through the document vectorization, which converts each document image into a document vector that characterizes the shape and frequency of the contained character or word images. Document images are vectorized by using vertical component cuts and character extremum points, which are both tolerant to the variation in text fonts and styles, noise, and various types of document degradation. For each script or language under study, a script or language template is first constructed through a training process. Scripts and languages of document images are then determined according to the distances between converted document vectors and the preconstructed script and language templates. Experimental results show that the proposed technique is accurate, easy for extension, and tolerant to noise and various types of document degradation.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:30 ,  Issue: 1 )