By Topic

Robust Object Tracking Via Online Dynamic Spatial Bias Appearance Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Datong Chen ; Carnegie Mellon Univ., Pittsburgh ; Jie Yang

This paper presents a robust object tracking method via a spatial bias appearance model learned dynamically in video. Motivated by the attention shifting among local regions of a human vision system during object tracking, we propose to partition an object into regions with different confidences and track the object using a dynamic spatial bias appearance model (DSBAM) estimated from region confidences. The confidence of a region is estimated to reflect the discriminative power of the region in a feature space and the probability of occlusion. We propose a novel hierarchical Monte Carlo (HAMC) algorithm to learn region confidences dynamically in every frame. The algorithm consists of two levels of Monte Carlo processes implemented using two particle filtering procedures at each level and can efficiently extract high-confidence regions through video frames by exploiting the temporal consistency of region confidences. A dynamic spatial bias map is then generated from the high-confidence regions and is employed to adapt the appearance model of the object and to guide a tracking algorithm in searching for correspondences in adjacent frames of video images. We demonstrate feasibility of the proposed method in video surveillance applications. The proposed method can be combined with many other existing tracking systems to enhance the robustness of these systems.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:29 ,  Issue: 12 )