Scheduled Maintenance on April 29th, 2016:
IEEE Xplore will be unavailable for approximately 1 hour starting at 11:30 AM EDT. We apologize for the inconvenience.
By Topic

Iterative Extensions of the Sturm/Triggs Algorithm: Convergence and Nonconvergence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
John Oliensis ; Stevens Inst. of Technol., Hoboken ; Richard Hartley

We give the first complete theoretical convergence analysis for the iterative extensions of the Sturm/Triggs algorithm. We show that the simplest extension, SIESTA, converges to nonsense results. Another proposed extension has similar problems, and experiments with "balanced" iterations show that they can fail to converge or become unstable. We present CIESTA, an algorithm that avoids these problems. It is identical to SIESTA except for one simple extra computation. Under weak assumptions, we prove that CIESTA iteratively decreases an error and approaches fixed points. With one more assumption, we prove it converges uniquely. Our results imply that CIESTA gives a reliable way of initializing other algorithms such as bundle adjustment. A descent method such as Gauss-Newton can be used to minimize the CIESTA error, combining quadratic convergence with the advantage of minimizing in the projective depths. Experiments show that CIESTA performs better than other iterations.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:29 ,  Issue: 12 )