By Topic

Maximum-Likelihood Registration of Range Images with Missing Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gregory C. Sharp ; Massachusetts Gen. Hosp., Boston ; Sang W. Lee ; David K. Wehe

Missing data are common in range images, due to geometric occlusions, limitations in the sensor field of view, poor reflectivity, depth discontinuities, and cast shadows. Using registration to align these data often fails, because points without valid correspondences can be incorrectly matched. This paper presents a maximum-likelihood method for registration of scenes with unmatched or missing data. Using ray casting, correspondences are formed between valid and missing points in each view. These correspondences are used to classify points by their visibility properties, including occlusions, field of view, and shadow regions. The likelihood of each point match is then determined using statistical properties of the sensor, such as noise and outlier distributions. Experiments demonstrate high rates of convergence on complex scenes with varying degrees of overlap.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:30 ,  Issue: 1 )