By Topic

Three-Dimensional Surface Mesh Segmentation Using Curvedness-Based Region Growing Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Anupama Jagannathan ; Motorola Inc., Anaheim ; Eric. L. Miller

A new parameter-free graph-morphology-based segmentation algorithm is proposed to address the problem of partitioning a 3D triangular mesh into disjoint submeshes that correspond to the physical parts of the underlying object. Curvedness, which is a rotation and translation invariant shape descriptor, is computed at every vertex in the input triangulation. Iterative graph dilation and morphological filtering of the outlier curvedness values result in multiple disjoint maximally connected submeshes such that each submesh contains a set of vertices with similar curvedness values, and vertices in disjoint submeshes have significantly different curvedness values. Experimental evaluations using the triangulations of a number of complex objects demonstrate the robustness and the efficiency of the proposed algorithm and the results prove that it compares well with a number of state-of-the-art mesh segmentation algorithms.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:29 ,  Issue: 12 )