System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Rule Mining and Classification in a Situation Assessment Application: A Belief-Theoretic Approach for Handling Data Imperfections

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hewawasam, K.K.R. ; Univ. of Miami, Coral Gables ; Premaratne, K. ; Mei-Ling Shyu

Management of data imprecision and uncertainty has become increasingly important, especially in situation awareness and assessment applications where reliability of the decision-making process is critical (e.g., in military battlefields). These applications require the following: 1) an effective methodology for modeling data imperfections and 2) procedures for enabling knowledge discovery and quantifying and propagating partial or incomplete knowledge throughout the decision-making process. In this paper, using a Dempster-Shafer belief-theoretic relational database (DS-DB) that can conveniently represent a wider class of data imperfections, an association rule mining (ARM)-based classification algorithm possessing the desirable functionality is proposed. For this purpose, various ARM-related notions are revisited so that they could be applied in the presence of data imperfections. A data structure called belief itemset tree is used to efficiently extract frequent itemsets and generate association rules from the proposed DS-DB. This set of rules is used as the basis on which an unknown data record, whose attributes are represented via belief functions, is classified. These algorithms are validated on a simplified situation assessment scenario where sensor observations may have caused data imperfections in both attribute values and class labels.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:37 ,  Issue: 6 )