By Topic

Poly (3,4-Ethylenedioxythiophene) for Chronic Neural Stimulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xinyan Tracy Cui ; Pittsburgh Univ., Pittsburgh ; David Daomin Zhou

Chronic neural stimulation using microelectrode arrays requires highly stable and biocompatible electrode materials with high charge injection capability. Conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) was electrochemically deposited on thin film Pt electrodes of stimulation electrode arrays to evaluate its properties for chronic stimulation. The coated electrodes demonstrated much lower impedance than thin film Pt due to the high surface area and high ion conductivity across the film. The PEDOT film also presents intrinsic redox activity which contributes to the low impedance as well as a much higher charge storage capacity. The charge injection limit of PEDOT electrode was found to be 2.3 mC/cm2 , comparable to IrOx and much higher than thin film Pt. Under biphasic stimulation, the coated electrodes exhibited lower voltage and linear voltage excursion. Well-coated PEDOT electrodes were stable under chronic stimulation conditions, suggesting that PEDOT is a promising electrode material to be further developed for chronic neural stimulation applications.

Published in:

IEEE Transactions on Neural Systems and Rehabilitation Engineering  (Volume:15 ,  Issue: 4 )