By Topic

Cortical Neural Prosthesis Performance Improves When Eye Position Is Monitored

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Neural prostheses that extract signals directly from cortical neurons have recently become feasible as assistive technologies for tetraplegic individuals. Significant effort toward improving the performance of these systems is now warranted. A simple technique that can improve prosthesis performance is to account for the direction of gaze in the operation of the prosthesis. This proposal stems from recent discoveries that the direction of gaze influences neural activity in several areas that are commonly targeted for electrode implantation in neural prosthetics. Here, we first demonstrate that neural prosthesis performance does improve when eye position is taken into account. We then show that eye position can be estimated directly from neural activity, and thus performance gains can be realized even without a device that tracks eye position.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:16 ,  Issue: 1 )