Cart (Loading....) | Create Account
Close category search window

Fixed-Final-Time-Constrained Optimal Control of Nonlinear Systems Using Neural Network HJB Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tao Cheng ; Univ. of Texas at Arlington, Fort Worth ; Lewis, F.L. ; Abu-Khalaf, M.

In this paper, fixed-final time-constrained optimal control laws using neural networks (NNS) to solve Hamilton-Jacobi-Bellman (HJB) equations for general affine in the constrained nonlinear systems are proposed. An NN is used to approximate the time-varying cost function using the method of least squares on a predefined region. The result is an NN nearly -constrained feedback controller that has time-varying coefficients found by a priori offline tuning. Convergence results are shown. The results of this paper are demonstrated in two examples, including a nonholonomic system.

Published in:

Neural Networks, IEEE Transactions on  (Volume:18 ,  Issue: 6 )

Date of Publication:

Nov. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.