By Topic

Preliminary Study on Wilcoxon Learning Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jer-Guang Hsieh ; Nat. Sun Yat-Sen Univ., Kaohsiung ; Yih-Lon Lin ; Jyh-Horng Jeng

As is well known in statistics, the resulting linear regressors by using the rank-based Wilcoxon approach to linear regression problems are usually robust against (or insensitive to) outliers. This motivates us to introduce in this paper the Wilcoxon approach to the area of machine learning. Specifically, we investigate four new learning machines, namely Wilcoxon neural network (WNN), Wilcoxon generalized radial basis function network (WGRBFN), Wilcoxon fuzzy neural network (WFNN), and kernel-based Wilcoxon regressor (KWR). These provide alternative learning machines when faced with general nonlinear learning problems. Simple weights updating rules based on gradient descent will be derived. Some numerical examples will be provided to compare the robustness against outliers for various learning machines. Simulation results show that the Wilcoxon learning machines proposed in this paper have good robustness against outliers. We firmly believe that the Wilcoxon approach will provide a promising methodology for many machine learning problems.

Published in:

Neural Networks, IEEE Transactions on  (Volume:19 ,  Issue: 2 )