By Topic

Neural Networks for Improved Tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Perlovsky, L.I. ; Harvard Univ., Cambridge ; Deming, R.W.

In this letter, we have developed a neural network (NN) based upon modeling fields for improved object tracking. Models for ground moving target indicator (GMTI) tracks have been developed as well as neural architecture incorporating these models. The neural tracker overcomes combinatorial complexity of tracking in highly cluttered scenarios and results in about 20-dB (two orders of magnitude) improvement in signal-to-clutter ratio.

Published in:

Neural Networks, IEEE Transactions on  (Volume:18 ,  Issue: 6 )