By Topic

Dynamics of Generalized PCA and MCA Learning Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dezhong Peng ; Univ. of Electron. Sci. & Technol., Chengdu ; Zhang Yi

Principal component analysis (PCA) and minor component analysis (MCA) are two important statistical tools which have many applications in the fields of signal processing and data analysis. PCA and MCA neural networks (NNs) can be used to online extract principal component and minor component from input data. It is interesting to develop generalized learning algorithms of PCA and MCA NNs. Some novel generalized PCA and MCA learning algorithms are proposed in this paper. Convergence of PCA and MCA learning algorithms is an essential issue in practical applications. Traditionally, the convergence is studied via deterministic continuous-time (DCT) method. The DCT method requires the learning rate of the algorithms to approach to zero, which is not realistic in many practical applications. In this paper, deterministic discrete-time (DDT) method is used to study the dynamical behaviors of the proposed algorithms. The DDT method is more reasonable for the convergence analysis since it does not require constraints as that of the DCT method. It is proven that under some mild conditions, the weight vector in these proposed algorithms will converge exponentially to principal or minor component. Simulation results are further used to illustrate the theoretical results.

Published in:

Neural Networks, IEEE Transactions on  (Volume:18 ,  Issue: 6 )