By Topic

Structural and Electrical Characterization of Carbon Nanofibers for Interconnect Via Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)

We present temperature-dependent electrical characteristics of vertically aligned carbon nanofiber (CNF) arrays for on-chip interconnect applications. The study consists of three parts. First, the electron transport mechanisms in these structures are investigated using I-V measurements over a broad temperature range (4.4 K to 350 K). The measured resistivity in CNF arrays is modeled based on known graphite two-dimensional hopping electron conduction mechanism. The model is used because of the disordered graphite structure observed during high-resolution scanning transmission electron microscopy (STEM) of the CNF and CNF-metal interface. Second, electrical reliability measurements are performed at different temperatures to demonstrate the robust nature of CNFs for interconnect applications. Finally, some guidance in catalyst material selection is presented to improve the nanostructure of CNFs, making the morphology similar to multiwall nanotubes.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:6 ,  Issue: 6 )