By Topic

Generalized Impedance Boundary Condition for Conductor Modeling in Surface Integral Equation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhi Guo Qian ; Illinois Univ., Urbana ; Weng Cho Chew ; Suaya, R.

A generalized impedance boundary condition is developed to rigorously model on-chip interconnects in the full-wave surface integral equation by a two-region formulation. It is a combination of the electric-field integral equation for the exterior region and the magnetic-field integral equation for the interior conductive region. The skin effect is, therefore, well captured. A novel integration technique is proposed to evaluate the Green's function integrals in the conductive medium. Towards tackling large-scale problems, the mixed-form fast multipole algorithm and the multifrontal method are incorporated. A new scheme of the loop-tree decomposition is also used to alleviate the low-frequency breakdown for the formulation. Numerical examples show the accuracy and reduced computation cost.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:55 ,  Issue: 11 )