Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Multiscale Vascular Surface Model Generation From Medical Imaging Data Using Hierarchical Features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bekkers, E.J. ; Stanford Univ., Stanford ; Taylor, C.A.

Computational fluid dynamics (CFD) modeling of blood flow from image-based patient specific models can provide useful physiologic information for guiding clinical decision making. A novel method for the generation of image-based, 3-D, multiscale vascular surface models for CFD is presented. The method generates multiscale surfaces based on either a linear triangulated or a globally smooth nonuniform rational B-spline (NURB) representation. A robust local curvature analysis is combined with a novel global feature analysis to set mesh element size. The method is particularly useful for CFD modeling of complex vascular geometries that have a wide range of vasculature size scales, in conditions where 1) initial surface mesh density is an important consideration for balancing surface accuracy with manageable size volumetric meshes, 2) adaptive mesh refinement based on flow features makes an underlying explicit smooth surface representation desirable, and 3) semi-automated detection and trimming of a large number of inlet and outlet vessels expedites model construction.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:27 ,  Issue: 3 )