By Topic

Adaptive Cluster-Based Data Collection in Sensor Networks with Direct Sink Access

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lotfinezhad, M. ; Dept. of Electr. & Comput. Eng., Univ. of Toronto, Toronto, ON ; Ben Liang ; Sousa, E.S.

Recently wireless sensor networks featuring direct sink access have been studied as an efficient architecture to gather and process data for numerous applications. We focus on the joint effect of clustering and data correlation on the performance of such networks. We propose a novel cluster-based data collection scheme for sensor networks with direct sink access (CDC-DSA), and provide an analytical framework to evaluate its performance in terms of energy consumption, latency, and robustness. In our scheme, CHs use a low-overhead and simple medium access control (MAC) conceptually similar to ALOHA to contend for the reachback channel to the data sink. Since in our model data is collected periodically, the packet arrival is not modeled by a continuous random process and, therefore, our framework is based on transient analysis rather than a steady state analysis. Using random geometry tools, we study how the optimal average cluster size and energy savings vary in a response to various data correlation levels under the proposed MAC. Extensive simulations for various protocol parameters show that our analysis is fairly accurate for a wide range of parameters. Our results suggest that despite the tradeoff between energy consumption and latency, both of which can be substantially reduced by proper clustering design.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:7 ,  Issue: 7 )