By Topic

Incremental Maintenance of Online Summaries Over Multiple Streams

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Altiparmak, F. ; Ohio State Univ., Columbus ; Tuncel, E. ; Ferhatosmanoglu, H.

We propose a novel approach based on predictive quantization (PQ) for online summarization of multiple time-varying data streams. A synopsis over a sliding window of most recent entries is computed in one pass and dynamically updated in constant time. The correlation between consecutive data elements is effectively taken into account without the need for preprocessing. We extend PQ to multiple streams and propose structures for real-time summarization and querying of a massive number of streams. Queries on any subsequence of a sliding window over multiple streams are processed in real time. We examine each component of the proposed approach, prediction, and quantization separately and investigate the space-accuracy trade-off for synopsis generation. Complementing the theoretical optimality of PQ-based approaches, we show that the proposed technique, even for very short prediction windows, significantly outperforms the current techniques for a wide variety of query types on both synthetic and real data sets.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:20 ,  Issue: 2 )