Cart (Loading....) | Create Account
Close category search window
 

Discovering and Explaining Abnormal Nodes in Semantic Graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shou-De Lin ; Comput. Sci. & Inf. Eng. Dept., Nat. Taiwan Univ., Taipei ; Chalupsky, H.

An important problem in the area of homeland security is to identify suspicious entities in large datasets. Although there are methods from knowledge discovery and data mining (KDD) focusing on finding anomalies in numerical datasets, there has been little work aimed at discovering suspicious instances in large and complex semantic graphs whose nodes are richly connected with many different types of links. In this paper, we describe a novel, domain independent and unsupervised framework to identify such instances. Besides discovering suspicious instances, we believe that to complete the process, a system has to convince the users by providing understandable explanations for its findings. Therefore, in the second part of the paper we describe several explanation mechanisms to automatically generate human understandable explanations for the discovered results. To evaluate our discovery and explanation systems, we perform experiments on several different semantic graphs. The results show that our discovery system outperforms the state-of-the-art unsupervised network algorithms used to analyze the 9/11 terrorist network by a large margin. Additionally, the human study we conducted demonstrates that our explanation system, which provides natural language explanations for its findings, allowed human subjects to perform complex data analysis in a much more efficient and accurate manner.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:20 ,  Issue: 8 )

Date of Publication:

Aug. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.